

Subject Name: WIRELESS COMMUNICATION AND NETWORKS

Prepared by (Faculty (s) Name): Mrs. K.VANISREE

Year and Sem, Department: IV Year I Sem ECE Dept.

Important points / Definitions:

Unit-I

1. Frequency reuse in mobile cellular systems means that frequencies allocated to the service are reused in a regular pattern of cells, each covered by one base station. The repeating regular pattern of cells is called cluster.

2. When the mobile unit travels along a path it crosses different cells. Each time it enters into a different cell associated with f = different frequency, control of the mobile is taken over by the other base station. This is known as 'Hand off'.

3. There is a likelihood that a call is blocked if all the RF channels are engaged. This is called 'Grade of Service' "GOS".

4. A given cell/sector uses a number of RF channels. Because of imperfect receiver filters, which allow nearby frequencies to leak into pass band, adjacent channel interference takes place.

5. a cellular system having a cell radius "R" and Co-channel distance "D" and the cluster size "N". Since the cell size is fixed, co-channel interference will be independent of power.

co-chl interference is a function of "q" = D/R.Q = Co-chl interference reduction factor.

"q" is also related to cluster size (N) as q = 3N, q = 3N = D/R.

6. Each cell is allocated a group of k channels, The S channels are divided among N cells. the total number of available radio channels S = K * N

7. The N cells which use the complete set of channels is called cluster. •

8. The cluster can be repeated M times within the system. The total number of channels, C, is used as a measure of capacity C = M k N.

9. The number of cells per cluster, N, can only have values which satisfy

 $N = i^2 + ij + j^2$ Co-channel neig

Co-channel neighbors of a particular cell, ex, i=3 and j=2.

10.

Handoff margin $\Delta = P_{r,handoff} - P_{r,minimumusable}$ cannot be too large or too small.

If Δ is too large, unnecessary handoffs burden the MSC

If Δ is too small, there may be insufficient time to complete handoff before a call is lost.

11. Dwell time: the time over which a call may be maintained within a cell without handoff. Dwell time depends on – propagation – interference – distance – speed.

12. For hexagonal geometry with 7-cell cluster, with the mobile unit being at the cell boundary, the signal-to-interference ratio for the worst case can be approximated as

$$\frac{S}{I} = \frac{R^{-4}}{2(D-R)^{-4} + (D-R/2)^{-4} + (D+R/2)^{-4} + (D+R)^{-4} + D^{-4}}$$

13. Cell Splitting: subdividing a congested cell into smaller cells.

14. Sectoring: directional antennas to control the interference and frequency reuse.

15. Coverage zone : Distributing the coverage of a cell and extends the cell boundary to hard-to-reach place.

16. Cells with the same frequency band must have a minimum distance from each other, known as the reuse distance D:

$D=\sqrt{3N}R$

17. The carrier-to-cochannel-interferenceratio is expressed as

 $\frac{C}{I} = \frac{1}{6}q^n = \frac{1}{6}\left(\frac{D}{R}\right)^n = \frac{1}{6}(3N)^{n/2}$

Short Questions (minimum 10 previous JNTUH Questions – Year to be mentioned)

Unit-I: The Cellular Concepts-Systems Design Fundamentals

- 1. Draw the block diagram of cellular system. [May 2019]
- 2. Write short notes on GOS. [May 2019]
- 3. What are prioritizing Handoffs [May 2017]
- 4. Explain about Sectoring [May 2017]
- 5. Define Co-channel Interference.[June -2018]
- 6. Define handoff. [June -2018]
- 7. What is intersystem handoff [April-2018]
- 8. Define Adjacent-channel Interference [April-2018]
- 9. Define Coherence time.[May/June-2019]
- 10. List out various methods of reducing co-channel interference.[May/June-2019]
- 11. Write short notes on channel sharing. [May/June-2019]
- 12. What is meant by handoff initiation? [May/June-2019]

Long Questions (minimum 10 previous JNTUH Questions – Year to be mentioned)

1. Explain frequency reuse concept. .[May - 2019] .[May - 2017],[June - 2018]

- 2. Discuss about trunking and Grade of service. .[May 2019] .[May 2017],[April-2018]
- 3. How we can improve coverage and capacity in cellular system? .[May 2019]
- 4. Determine the number of cells in cluster for the following values of the shift Parameters
- i and j in a regular hexagon geometry pattern: (i) i=2 and j=4 (ii) i=3 and j=3. [May 2019]
- 5. Write short notes on Channel assignment strategies. [May 2017]
- 6. Why Sectorization of cell is very important and writes its advantages [May 2016]
- 7. What is Handoff process? Explain the hand off mechanism [May 2016]
- 8. Prove that for a Hexagonal geometry, the co-channel reuse ratio is given by $Q = \sqrt{3} N$,

where $N = i^2 + ij + j^2 [May - 2016]$

9. Draw the block diagram of cellular system [May- 2019]

10. Define Co-channel Interference [June-2018]

11. Discuss different techniques used for improving coverage and capacity in cellular systems

[June- 2018]

12. Write short notes on blocking probability [June-2018]

13. Explain the various types of Handoff processes available

Fill in the Blanks / Choose the Best: (Minimum 10 to 15 with Answers)

1. Which of the following is/are the main part(s) of basic cellular system		[D]
.a) A mobile Unit	b) A cell Site	
c) A mobile Telephone Switching Office	d) All of the above	

2. State whether True of False. i) The cells or subdivisions of a geographical area are always hexagonal. ii) A land to Mobile call originates through the Telephone exchange. [B]
a) True, False
b) False, True
c) False, False
d) True, True
3. Which mode is used for installing networks in wireless communication device characteristics? [C]
a) Fixed and wired.
b) Mobile and wired.
c) Fixed and wired.
d) Mobile and wireless.

4.A antenna which attempts to direct all its energy in a particular direction is called as
a) Directional Antenna[D]a) Directional Antennab) One to One Antennac) Propagation Antennad) Single Direction Antenna

5. Which of the following is called an ideal antenn	a? [C]
a) Dipole antennac) Isotropic antenna	b) Directional antenna d) Loop antenna
6. Which of the following antenna radiates power w	•
a) Directional antennac) Isotropic antenna	b) Dipole antenna d) Loop antenna
7. Why neighboring stations are assigned differen	• •
a) To minimize interferencec) To maximize throughput	b) To minimize aread) To maximize capacity of each cell
8. EIRP is abbreviated as ?	[A]
a) Effective isotropic radiated powerc) Effective and immediate radiated power	b) Effective isotropic radio powerd) Effective and immediate ratio of
9. What is a cell in cellular system?	[C]
a) A group of cellsc) A small geographical area	b) A group of subscribersd) A large group of mobile systems
e) it shan geographical area	a) It hage group of moone systems
10. What is frequency reuse?a) Process of selecting and allocating channelsc) Process of selecting frequency of mobile equip cells	[D] b) Process of selection of mobile users oment d) Process of selection of number of
11. Why the shape of cell is not circle?	[C]
a) Omni directionality	b) Small area
c) Overlapping regions or gaps are left	d) Complex design
12. What is the main reason to adopt hexagon shap	
-	b) Simple design
c) Small area	d) Single directional
13. Which type of antenna is used for center excite	ed cells? [D]
a) Dipole antenna	b) Grid antenna
c) Sectored antenna	d) Omnidirectional antenna
14. Which type of antenna is used for edge excited	cells? [C]
a) Omnidirectional antenna	b) Grid antenna
c) Sectored directional antenna	d) Dipole antenna
15 What is a cluster in a callular system?	
15. What is a cluster in a cellular system?	[B]
a) Group of frequenciesc) Group of subscribers	[B] b) Group of cells d) Group of mobile systems

16. What is a borrowing strategy in fixed channel assignments?a) Borrowing channels from neighbouring cellb) Borrowing cluster	
	hannels from other base station
	[D] pility of blocked call computational load on system
· · · · · · · · · · · · · · · · · · ·	[A] Another mobile in same cell operating on same frequency
	[D] using different frequency sing same frequency
20. Actual radio coverage of a cell is calledb)a) Fingerprintb)c) Imprintd) 1	[B] Footprint Matrix
21. For a cellular system, if there are N cells and each cell is the total number of available radio channels, S. a) $S=k*N$ b)	l is allocated k channel. Then [A] S=k/N
c) S=N/k d)	$S=k^N$
22.Theis not an objective for channel assignment stra) Efficient utilization of spectrumb)c) Minimize the interferenced) I	ategies[D]IncreaseofcapacityMaximize the interference
23.In fixed channel assignment strategy, each cell is allo	cated a predetermined set of [A]
a) Voice channelsb)c) Frequencyd)	Control channels base stations
24.A call in fixed channel strategy, if all the channels in a cella) Queuedb)c) Blockedd)	are occupied is called[C] Cross talk Delayed
25. In dynamic channel assignment strategy, base station reque a) MSC	ests channel from [A] b) Neighbouring cell

c) Neighbouring cluster d) Neighbouring base station

26. RSSI stands fora) Radio System Signal Indicatorc) Radio Signal Strength Indication	[A] b) Restricted Signal Strength Indicator d) Restricted System Software Indicator
27. Interference on voice channels causesa) Blocked callsc) Queuing	b)Cross[B]d) Missed calls
28. Interference in control channel leads to _a) Cross talkc) Blocked calls	b) [C] d) Voice traffic
29.Co-channel interference is a function of _a) Radius of cellc) Received power	[A]b)Transmittedpowerd)Frequency of mobile user
 30. Co-channel reuse ratio is define by a) Q=D*R c) Q=D^R 	[B] b) Q=D/R d) Q=1/R
 31. Co-channel ratio in terms of cluster size a) √(3N) c) 3N 	is defined as [A] b)N d) √N

Important points / Definitions:

Unit-II

1. A simple approach to propagation modeling is to estimate the power ratio between transmitter and receiver as a function of the separation distance d, that ratio is referred to as path loss.

2. the Friis' power transmission formula in free space. A transmitted power source P_t radiates spherically, with an antenna gain G_t ; the portion of that power impinging an effective area A_e at a distance d is $P_r = P_t G_t A_{e'} (4\pi d^2)$

3. The path loss for the Friis free-space equation in decibels is

$$P_r(d) = 20 \log_{10}(d) + 20 \log_{10}(4\pi) - G_t - G_r - 20 \log_{10}(\lambda),$$
 (5.278)

4. The path loss reflects how much power is dissipated between transceiver and receiver antennas (without counting any antenna gain). $I(d\mathbf{R}) = 32.45 \pm 20 \times \log(f/f_c) \pm 20 \times \log(d/d_c)$

 $L(dB) = 32.45 + 20 \times \log(f/f_0) + 20 \times \log(d/d_0)$

5. Ray tracing is a method that uses a geometric approach, and examines what paths the wireless radio signal takes from transmitter to receiver as if each path was a ray of light

6.An isotropic radiator is an ideal antenna which radiates power with unit gain uniformly in all directions ,the effective isotropic radiated power (EIRP) is defined as $EIRP = P_t * Gt$

7. The Fraunhofer region of a transmitter antenna is defined as the region beyond the far-field distance d_f which is inversely proportional to wave length ' λ '

$$d_f = \frac{2D^2}{\lambda}$$

8. The relationship between electric field with received power at a distance d is

$$P_r(d) = \frac{P_t G_t G_r \lambda^2}{(4\pi)^2 d^2}$$

9. The **Reflection , Diffraction and Scattering** are the three mechanisms which impact propagation in a mobile radio communication system.

10. The Brewster Angle is the angle at which no reflection occurs in the medium of origin and it is expressed as

 $\sin \Theta_{\rm B} = \frac{\sqrt{\epsilon_r} - 1}{\sqrt{\epsilon_r^2} - 1}$

11. the path loss for the two-ray model to be expressed

 $P_L(dB) = 40 \log d - (10 \log G_t + 10 \log G_r + 20 \log h_r + 20 \log h_t)$

12. Scattering is what happens when a wave impinges on an object that is rough

13..The most common extension of the free-space model is the log-distance path-loss model. This classic model is based on extensive channel measurements.

 $P_{\rm r}(d) = \alpha + 10\beta \log_{10}(d) + \eta \tag{5.281}$

14. The Radar Cross Section is defined as the ratio of the power density of the signal scattered in the direction of a receiver to the power density of the radio waves.

15. Partition Losses' in Indoor propagation model is classified into two types such as hard partition and soft partition losses'.

Short Questions (minimum 10 previous JNTUH Questions – Year to be mentioned) Unit-II: Mobile Radio Propagation Large-Scale Path Loss

1. Discuss about Brewster angle. . [May – 2019][April-2018]

- 2. Write a short note on signal reflections in a flat terrain. [May 2019]
- 3. Discuss about Hata Model [May 2017]
- 4. write about site specific modeling [May 2017]
- 5. Explain knife Edge Diffraction Model [June -2018]
- 6. Discuss about Longley-Ryce Model [April-2018]
- 7. Discuss about Ericsson Multiple Breakpoint Model [April-2018]
- 8. What are basic propagation mechanisms? [May/June-2019]
- 9 Explain signal reflections in flat [May/June-2019]
- 10. Explain signal reflection in hilly terrain. [May/June-2019]

Long Questions (minimum 10 previous JNTUH Questions – Year to be mentioned)

1. Discuss in detail i) The propagation in near distance ii) Long distance propagation.[May –

2019]

2. Explain knife-edge diffraction model. .[May – 2019],[April-2018]

- 3. Explain the phase difference between direct and reflected paths in detail. .[May 2019]
- 4. Discuss about indoor propagation models in detail.[May 2019]
- 5. Discuss about Brewster angle. [May 2017]
- 6. Explain about Longley-Ryce model. [May 2017]
- 7. Explain in detail about Ground Reflection Model .[May.- 2017]
- 8. Derive the equation of the Path loss using Two-Ray Model with neat diagrams [June-

2018]

9. How the received signal strength is predicted using the free space propagation Model? Explain. [June-2018],[April-2018]

Fill in the Blanks / Choose the Best: (Minimu 1. Fading of the received radio signals in a because ofA) Direct propagationC) Bi-path Propagation	am 10 to 15 with Answers)mobile communication environment occursB) Multipath PropagationD) None of the above	[B]
2, The mechanism behind electromagnetic va) Reflectionc) Scattering	wave propagation cannot be attributed to b) Diffraction d) Sectoring	[D]
3. The propagation model that estimates rada) Large scale propagation modelc) Fading model	lio coverage of a transmitter is calledb) Small scale propagation modeld) Okumura model	[A]
4.Free space propagation model is to predica) Received signal strengthc) Gain of transmitter5. Which of the following do not undergo fit	b) Transmitted powerd) Gain of receive	[A] [D]
a) Satellite communication systemc) Wireless line of sight radio links	b) Microwave line of sight radio linkd) Wired telephone systems	
6. The free space model predicts that receiva) Gain of transmitter antennac) Power of transmitter antenna	b) T-R separationd) Effective aperture of the antenna	[B]
 7. Relation between gain and effective aper a) G=(4πAe)/λ2 c) G=4πAe 	ture is given by b) G= $(4\pi \lambda 2)/$ Ae d) G=Ae/ $\lambda 2$	[A]
 8. Fraunhofer distance is given by a) 2D2/λ c) D/λ 	 b) 2D/λ d) 2D/λ2 	[A]
9. Far field region is also known asa) Near field regionc) Erlang region	b) Fraunhofer region d) Fresnel region	[B]
10. Path loss in free space model is defined a) Effective transmitted power and gain b T-R	as difference of b) Effective received power and distance betw	[D] veen
_	l) Effective transmitter power and receiver po	
a) Reflection	ot impact propagation in mobile communication	ion [D]
c) Scattering12 What is the dimension of object as comp	d) Refraction bared to wavelength of propagating wave whe	
reflection occurs?		[A]

a)	Large
----	-------

b) Small

c) Same

d) Very small

u) very sman		
 13 The wave propagating from one medium transmitted is a) Both mediums have same electrical properties c) Both mediums have same magnetic properties 	perties b) Both mediums have different ele	[B] ctrical
14. Thecase of reflection, in coura) Loss of energy during absorptionc) No loss of energy in absorption	b) Total energy reflected back to first m	edium
15 Scattering occurs when medium consist wavelength.a) Same	s of objects with dimensions con b) Small	npared to [B]
c) Large	d) Very large	
16 The relates the incident and re		[D]
a) Fresnel transmission coefficient	b) Scattering coefficient	
c) Diffraction coefficients	d) Fresnel reflection coefficient	
17 Reflection coefficient is not a function	of	[B]
a) Material property	b) Diffraction loss	[]
c) Wave polarization	d) Angle of incidence	
18 Polarized wave can be mathematically i	-	[C]
	b) Two spatially adjacent components	
c) Two spatially orthogonal components	d) Six orthogonal components	
		F 4 3
19 Permittivity and conductivity are insen	-	[A]
a) Operating frequencyc) Electric field	b) Polarization densityd) Property of material	
c) Electric field	d) Floperty of material	
20 Velocity of electromagnetic wave can b	e given by	[A]
a) $1/\sqrt{(\mu \epsilon)}$	b) μ/∈	[]
c) $1/(\mu \in)$	d) $\mu \in$	
21 The boundary condition at the surface of	of incidence obeys	[D]
a) Kepler's law	b) Gauss law	
c) Faraday law	d) Snell's law	
22 The angle at which no reflection occurs	-	_ [C]
a) Azimuth angle	b) Elevation angle	
c) Brewster angle	d) Inclination angle	

Unit III Important points / Definitions:

1.factors influencing small-scale fading •Rapid changes in signal strength over a small travel distance or time interval –Random frequency modulation \rightarrow varying Doppler shift –Speed of the mobile or speed of surrounding objects.

2. Slow Fading •over large distances, due to gross changes in path •also called shadowing, log-normal fading ν Fast Fading •over distances on the order of a wavelength •also called Rayleigh fading.

3. Doppler spreading increases the signal bandwidth •fd : +moving toward, -moving away •fd = $cos(\theta) \times (v/\lambda)$.

4. Wideband signal : a very narrow pulse, p(t), does not fluctuate when a receiver is moved about a local area \rightarrow The received power varies very little ν Narrowband signal : the CW signal strength will vary at a rate governed by the fluctuations of ai and $\theta i \rightarrow$ large signal fluctuations (fading) occur.

5. The impulse response is a wideband channel characterization and contains all the information to simulate or analyzer of radio transmission through the channel.

6. The channel impulse response is assumed to be time invariant or is at least wide sense stationary over small scale time interval is $H_b(\tau) = \sum_{i=0}^{N-1} a_i \exp(j\theta_i) \,\delta(\tau - \tau_i)$

7. The small scald fading behaves differently for two signals with different bandwidth in the identical multipath channel.

8. The instantaneous multipath power delay profile $|h_b^{(t_0; \tau)}|^2$ of the channel is equal to the energy received over the timed duration of the multipath delay divided by τ max.

9. The average small scale received power is simply sum of the average power received in each multipath components.

10. The instantaneous received power is

$$|\mathbf{r}(t)|2 = \left|\sum_{i=0}^{N-1} a_i \exp(j\theta_i 9t, \tau)\right|^2$$

11. The average power of a CW signal is equivalent to the average power of a wideband signal in a small scale region.

12. The multipath structure is determine the small scale fading effects by three techniques are direct pulse measurements, spread spectrum sliding corrector measurements, swept frequency measurements.

13. The multipath components are displayed on the CRO .The observed time scale on the CRO using sliding corrector is calculated by

Actual propagation time = $\frac{Observed time}{\gamma}$ where γ ism slide factor

14. The spread spectrum as compared to the direct pulse system is not a real time measurement.

15. There three parameters are used in multi path channel is mean excess delay, rms delay spread, and excess delay spread (XdB) which can be determined from a power delay profile.

16. The power delay profile is defined by

$$\frac{\sum_{k} p(\tau_{k}) \tau_{k}^{2}}{\sum_{k} p(\tau_{k})}$$

17. The coherence bandwidth is the range of frequencies over which two frequency components have strong potential for amplitude correlation and it is approximately

$$B_c = \frac{1}{5\sigma_r}$$

18. The coherence time is defined as the time over which the time correlation function is above 0.5 is approximately

$$T_c = \frac{9}{16\pi \text{ fm}}$$

19. After detection of the Doppler shifted signal the resulting baseband spectrum has a maximum frequency of 2fm is $S_{bbEZ}(f) = \frac{1}{8\pi \text{ fm}} K \left[\sqrt{1} - \left(\frac{f}{2\text{ fm}}\right) \right]^2$

20. The Level crossing rate is defined as the expected value at which the Rayleigh Fading envelope, normalized to the local rms signal level crosses a specified level in a positive going direction.

Short Questions (minimum 10 previous JNTUH Questions – Year to be mentioned)

Unit-III: Mobile Radio Propagation Low-Scale fading and Multipath

1. Explain Doppler shift. [May - 2019]

2. Discuss about slow fading.[May - 2019]

3. Discuss about level crossing [May – 2017]

4. Write short notes on Doppler Spread [May – 2017],[June-2018]

5. Describe Direct Sequence Spread Spectrum [June-2018]

6. List out the types of small-scale multipath measurements techniques [June- 2018]

7. What are the Time Dispersion Parameters of Multipath channels? [April-2018]

Long Questions (minimum 10 previous JNTUH Questions – Year to be mentioned)

1. Explain Fading effects due to multipath time delay. .[May - 2019]

2.DiscussRicean distribution. .[May - 2019]

3. Explain different types of small scale fading. .[May – 2019], [April-2018]

4. Discuss about frequency selective fading in detail.[May - 2019]

5. Discuss in detail about factors that influence small Scale Fading Model [May – 2017],[April-2018]

6. Discuss in detail about Fast Fading Slow fading [May – 2019]			
7. What is the difference between frequency	selective fading and flat fading [June – 2018]		
8. Derive the Impulse response model of a M	Iultipath channel [June-2018] [April-2018]		
9. Explain how the two-ray model is used	when a single ground reflection dominates the		
multipath effect [June – 2018]			
Fill in the Blanks / Choose the Best: (Minimu 1 .Which of the following is not an effect ca			
a) Rapid changes in signal strength	b) Random frequency modulation		
c) Power of base station	d) Time dispersion		
2. Which of the following factor does not in	Influence small scale fading [B]		
a) Multipath propagation	b) Power density of base station		
c) Speed of mobile	d) Speed of surrounding objects		
3. What is a measure of the maximum freque	ency difference for which signals are strongly		
correlated in amplitude	[A]		
a) Coherence bandwidthc) Incoherent bandwidth	b) Narrow bandwidthd) Wide bandwidth		
4. The Doppler shift for mobile moving with $(a^* + a^* = 0)/2$			
 a) (v*cos θ)/λ c) v*cos θ 	b) v/λ d) $v^*\lambda$		
5. The received local ensemble average pow a) Different	b) Equivalent [B]		
c) Not dependent	d) Double		
6. Which of the following is not a multipath power delay profile	channel parameter that can be determined from [D]		
a) Mean excess delay	b) RMS delay spread		
c) Excess delay spread	d) Doppler spread		
7. Which of the following is the first momen	t of the power delay profile [D]		
a) Rms delay spread	b) Excess delay spread		
c) Mean excess delay	d) Doppler spread		
8. What is the order of typical values of rms delay spread in outdoor mobile radio channel[A]			
a) Microseconds	b) Nanoseconds		
c) Seconds	d) Minutes		
9. Which of the following is not a statistical	models for multipath fading channels [D]		
a) Clarke's model for flat fading	b) Saleh and Valenzuela indoor statistical model		
c) Two ray Rayleigh fading model	d) Faraday model		

10. Which of the following is an important statistics of a Rayleigh fading useful for designing error control codes and diversity schemes? [C]			
a) Mobile speedc) Level crossing rate (LCR)	b) Doppler frequencyd) Power density		
11. Who presented the first statistical modela) Ossanac) Newton	for multipath fading channel[A]b) Rayleigh(A)d) Faraday(A)		
12. Which of the following is equal to receivea) Square of complex voltageb) Magnitude of complex voltage	b) Complex voltage		
c) Magnitude of complex voltage	d) Magnitude squared of complex voltage		
13. The level crossing rate (LCR) is defined crosses a specified level.	as expected rate at which fading envelope [A]		
a) Rayleigh c) Vanezuela	b) Saleh d) Faraday		
14. In urban areas, fading occurs due to heig	than height of mobile antenna than height of		
surrounding structure. a) Same	[D] b) Smaller		
c) Greater	d) Very larger		
15. Propagation model that characterize rapi	id fluctuation is called [B]		
a) Hata modelc) Large scale propagation model	b) Fading model d) Okumura model		
e) Large scale propagation model	d) Okumura moder		
16 Small scale propagation model is also kn a) Fading model			
c) Okumura model	b) Micro scale propagation modeld) Hata model		
17. The time dispersive properties of wideba	nd multipath channel are quantified by and [A]		
a) Mean excess delay, rms delay spreadc) Doppler spread, coherence time	b) Doppler spread, rms delay spread d) Mean excess delay, Doppler spread		
18. Small scale received power is of av component.	verage powers received in each multipath [D]		
a) Log c) Multiplication	b) Exponential d) Sum		
c) Multiplication	d) Sum		
	of transmitted signal with channel impulse		
a) Addition	[D] b) Subtraction		
c) Division	d) Convolution		
20. Apparent shift in frequency in multipath	wave is caused due to relative motion		

between_____

[D]

a) Base station and MSC	b) Mobile and surrounding objects
c) Mobile and MSC	d) Mobile and base station
a) Receiver	b) Radio channel
c) Multipath channel	d) Transceiver
22. Doppler shift is directly proportional to	[A]
a) Velocity	b) Height of antenna
c) Power of receiving antenna	d) Power of transmitter
is considered	asure of range of frequencies over which channel [D]
a) Time dispersivec) Time variant	b) Frequency selective
c) Time variant	d) Flat
24.Level crossing rate is a function of	[C]
a) Power transmitted by base station	b) Power density of receiver
c) Mobile speed	d) Bit error rate
25 Angular spread is a measure of how mult	tipath concentrates about [C]
a) Angle of arrival	b) Transmitted power
c) Single azimuthal direction of arrival	d) Received power

Unit-IV Important points / Definitions:

1. Diversity techniques are used in wireless communications systems to primarily to improve performance over a fading radio channel.

2. An Equalization is used to compensate the inter symbol interference created by multipath within time dispersive channel. • Equalizer within a receiver compensates the amplitude variations and delay characteristics

3. Diversity is another technique used to compensate fast fading and is usually implemented using two or more receiving antennas

4. Channel coding improves mobile communication link performance by adding redundant data bits in the transmitted message.

5. Polarization diversity: It relies on the de-correlation of the two receive ports to achieve diversity gain

6. Equalization can be used to describe any signal processing operation that minimizes ISI.

7. There as four types of diversities Spatial diversity : several antenna elements separated in space \succ Temporal diversity: transmission of the signal at different times \succ Frequency diversity: transmission of the signal at different frequencies \succ Angular diversity: multiple antennas with different antenna patterns \succ Polarization diversity: multiple antenna with different polarizations

8. Training mode in an adaptive equalizer • First a known fixed length training sequence is sent by the transmitter • Then the receiver's equalizer may adapt to a proper setting of minimum bit error detection.

9. The factors used in adaptive algorithm? > Rate of convergence > Mis-adjustments > Computational complexity.

10. Need for diversity in multipath propagation \succ Diversity is a technique used to mitigate the effects of fading. \succ It provides wireless link improvement at relatively low cost.

11. Coding gain is the measure of difference between the signal-to-noise ratio (SNR) levels of uncoded system and coded system. • It is required to reach both the uncoded and coded systems with same bit error rate (BER) levels. 17. State the significance of linear and decision feedback.

12. RAKE receiver is a radio receiver designed to counter the effects of multipath fading. It uses several sub-receivers called fingers and each finger independently decodes a single multipath component; at the final stage, all the fingers are combined in order to get signal with high signal to noise ratio,

13. In spatial diversity, multiple antennas are strategically spaced and connected to a common receiving system. • While one antenna sees a signal null, one of the other antennas may sees a signal peak and the receiver is able to select the antenna with the best signals at any time.

14. The factors used in adaptive algorithm? \succ Rate of convergence \succ Mis-adjustments \succ Computational complexity.

15. The need for diversity and equalization techniques • To reduce ISI, equalization technique is used. • Diversity is used to reduce fading effect

Short Questions (minimum 10 previous JNTUH Questions – Year to be mentioned) Unit-IV: Equalization and Diversity

- 1. Discuss the significance of MLSE. .[May 2019]
- 2. Give the differences between linear and non-linear equalizers.[May 2019]
- 3. Explain about frequency diversity [May 2017]
- 4. Discuss about Zero forcing algorithm [May 2017]
- 5. What is meant by decision feedback equalization [June -2018]
- 6. List out the three types of dedicated control channels in GSM. [June -2018]
- 7. Give the fundamentals of equalization. [June -2018]
- 8. Define equalization [April-2018]
- 9. Define frequency diversity.[May/June-2019]

Long Questions (minimum 10 previous JNTUH Questions – Year to be mentioned)

- 1. Explain about time diversity and frequency diversity methods. .[May 2019]
- 2. Discuss about equal gain and selection diversity techniques. .[May 2019]
- 3.Explain in detail about non linear equalizers.[May 2019]
- 4. Derive the LMS algorithm for an adaptive equalizer.[May 2019],[June-2018]
- 5. Explain in detail about Decision Feedback equalizers [May 2019]

6. Derive the expression for Maximal Ratio Combining Improvement [May – 2019],[April-2018]

- 7. What is the need for link calculation? Explain with suitable example.[June-2018]
- 8. Explain Maximum Likelihood Sequence Estimation (MLSE) Equalizer.[June-2018]
- 9. What are the different receiver diversity combining techniques? Explain [June-2018]
- 10. Explain LMS and Recursive Least Square algorithm [April-2018]
- 11. Explain the concept of space diversity with a neat diagram[[May/June-2019]

Fill in the Blanks / Choose the Best: (Minimum 10 to 1. Which of the following is not used to improve rectimes and distance? a) Modulation	
c) Diversity	d) Channel coding
2. Which of the following factor could not determinea) Structural propertiesc) Computational complexity	b) Rate of convergence d) Numerical properties
3. Which of the following is an algorithm for equalia) Zero forcing algorithmc) Recursive least square algorithm	zer? [D] b) Least mean square algorithm d) Mean square error algorithm
4. Which of the following is a drawback of zero fora) Long training sequencec) Not suitable for static channels	cing algorithm? [B] b) Amplification of noise d) Non zero ISI
5. Which of the following is not a category of spacea) Selection diversityc) Feedback diversity	b) Time diversity d) Equal gain diversity
6. Which of the factor does not determine the correla) Polarization anglec) Offset angle from the main beam direction	ation coefficient? [D] b) Cross polarization discrimination d) Coherence time
7. Equalization is used to compensate?a) Peak signal to noise ratioc) Channel fading	[B] b) Intersymbol interference d) Noises present in the signal
8. What is the operating modes of Training and traca) Diversity techniquesc) Equalization techniques	king? [C] b) Channel coding techniques d) Demodulation technique
9. An equalizer is said to be converged when it is pra) Trainedc) Installed	b) Tracked d) Used
10.Time for convergence of an equalizer is not a function.a) Equalizer algorithmc) Time rate of change of multipath radio channel	Inction of[D]b) Equalizer structure(D)d) Transmitter characteristics
11. Equalizer is usually implemented ina) Transmitterc) Radio channel	[B] b) Baseband or at IF in a receiver d) Modulator stage
12. Equalizer is of the channel.	[C]

a) Oppositec) Inverse filter	b) Same characteristicsd) Add on	
13. Rate of convergence is defined by of algorithm.a) Time spanc) Accuracy	b) Number of iterationsd) Complexity	[B]
14.Computational complexity is a measure ofa) Timec) Number of operations	b) Number of iterationsd) Accuracy	[C]
15. LMS equalizer minimizesa) Computational complexityc) Mean square error	b) Cost d) Power density of output sign	[C] nal
16. Diversity decisions are made bya) Receiverc) Channel	b) Transmitterd) Adaptive algorithms	[A]
17. Small scale fades are characterized by amplitudea) Largec) Rapid	fluctuations. b) Small d) Slow	[B]
 18 is used to prevent deep fade for rapidly varying a) Modulation c) Macroscopic diversity technique technique 	channel.b) Demodulationd) Microscopic diversity	[D]
19. Large scale fading can be mitigated with the help ofa) Modulationc) Macroscopic diversity techniquetechnique	b) Demodulation d) Microscopic diversity	[C]
20. Polarization diversity uses the as the diversitya) Modulation indexc) Reflection coefficient	y element. b) Carrier frequency d) Coherence time	[C]
21. Frequency diversity is implemented by transmitting infaa) Carrier frequencyc) Phase	b) Amplitude d) Modulation scheme	[A]
22. Frequency diversity uses as a diversity elementa) Correlation coefficientc) Coherence bandwidth	ent. b) Coherence time d) SNR	[C]
23.A RAKE receiver collects theversions of ta) Time shiftedc) Frequency shifted	he original signal. b) Amplitude shifted d) Phase shifted	[A]

24. RAKE receiver uses separate signal.[C]	to provide the time shifted version of the	
a) IF receiver	b) Equalizer	
c) Correlation receiver	d) Channel	
25. Each correlation receiver in RAKE receiver is adjusted in		
a) Frequency shift	b) Amplitude change	
c) Phase shift	d) Time delay	
26. The range of time delays that a particular correlator can search is called		
a) Search window	b) Sliding window	
c) Time span	d) Dwell time	
27. Interleaving is used to obtain di	versity.	[A]
a) Time	b) Frequency	
c) Polarization	d) Antenna	

Unit-V Important points / Definitions:

1.He original standard-defined 802.11 topologies: workgroup (ad hoc), infrastructure, and Extended Services Set.

2. A WLAN involves more than selecting the desired standard and selecting a security mechanism. Access point placement can have more effect on throughput than standards.

3. Ad hoc mode: Independent Basic Service Set (IBSS) is the ad hoc topology mode. Mobile clients connect directly without an intermediate access point

4. Infrastructure mode: In infrastructure mode, clients connect through an access point. There are two infrastructure modes

5. Extended Services Set (ESS): The wireless topology is extended with two or more BSSs connected by a distribution system (DS) or a wired infrastructure

6. WIFI uses radio technology to transmit and receive data at high speed. WIFI IEEE 802.11b WIFI IEEE 802.11a ϖ IEEE 802.11g

7. Limitations WIFI Interference ϖ Degradation in performance WIFI High power consumption WIFI Limited range

8. HIPERLAN stands for high performance local area network. It is a wireless standard derived from traditional LAN environments and can support multimedia and asynchronous data effectively at high data rates of 23.5 Mbps.

9. WPANs are used to convey information over short distances among a private, intimate group of participant devices

10. WiMAX would operate similar to WiFi, but at higher speeds over greater distances and for a greater number of users

11. The IEEE 802.16, the *Air Interface for Fixed Broadband Wireless Access Systems*, also known as the IEEE WirelessMAN air interface.

12.Wi-Fi works at 2.7 bps/Hz and can peak up to 54 Mbps in 20 MHz channel.

13.WiMAX works at 5 bps/Hz and can peak up to 100 Mbps in a 20 MHz channel.

IEEE 802 wireless network technology options

Network definition	IEEE standard	Known as
Wireless personal area network (WPAN)	IEEE 802.15.1	Bluetooth
Low-rate WPAN (LR- WPAN)	IEEE 802.15.4	ZigBee
Wireless local area network (WLAN)	IEEE 802.11	WiFi
Wireless metroplitan area network (WMAN)	IEEE 802.16	WiMAX

Short Questions (minimum 10 previous JNTUH Questions – Year to be mentioned) Unit-V: Wireless networks

- 1. Discuss the differences between the 802.11a and HIPERLAN-2. [May 2019]
- 2. State the challenges faced by WLAN industry..[May 2019]
- 3. Discuss the significance of MLSE .[May 2019]
- 4. Write about WLL [May 2017]
- 5. List the advantages of WLAN [May 2017]
- 6. What are the advantages of Wireless Local Area Networks?[June 2018]
- 7. Discuss about advantages and disadvantages of WLAN [April-2018]
- 8. Write about hiper lan WLL [April-2018]

Long Questions (minimum 10 previous JNTUH Questions – Year to be mentioned)

1. Describe the services offered by MAC and MAC management sub layers of IEEE 802.11

wireless LAN.[May-2019]

- 2. Explain the MAC management sub layer of IEEE 802.11.[May 2019]
- 3. Write notes on HIPERLAN..[May 2019]
- 4. Describe WPAN. Give its main features.[May 2019]
- 5. Discuss in detail about WLAN Topologies [May 2019]
- 6. Write shot notes on a). Wireless PANs b) Hyper LAN [May 2019]
- 7. Mention the functional requirements of hyper LAN [May 2016]
- 8. Explain the functioning of WATM with basic structure [May 2016]
- 9. Draw the programming model for WAP and explain its functioning [June-2018]
- 10. Draw and explain the various fields in a IEEE 802.11 MAC frame [June-2018]
- 11. When does a WLAN become a personal area network (PAN)? Explain [June-2018]
- 12. Draw the configuration of IEEE802.11 architecture [April-2018]

- 13. Explain the physical layer specifications of IEEE802.11 using infrared [April-2018]
- 14. Compare and contrast IEEE 802.11 a, b, g and n standards [April-2018]

Fill in the Blanks / Choose the Best: (Minimum 10 to 15 with Answers)

1. Term that is used for stationary or mobile wireles	ss station and also have optional centra	al		
base station is called	-	[D]		
a). Point to point.	b). Multi point.			
c). Network point.	d). Access point.			
		[B]		
2. In wireless LAN, there are many hidden stations so we cannot detect the				
a). Frames.	b). Collision.			
c). Signal.	d). Data.			
3. Specifications for a wireless LAN are called		[D]		
a). Standard 802.3z.	b). Standard 802.3u. cC). Project 802	2.3.		
d). IEEE 802.		[]]		
4. Wireless LANs implement security measures in		[B]		
a). System Layers.	b). Data Link Layers.			
c). Sub Layers.	d). Multi Layers			
5 IEEE 802 11 have three categories of		[A]		
5. IEEE 802.11 have three categories of a). frames	b),fields	[A]		
c).signals	d).sequences			
c).signais	u).sequences			
6. What is the full form of WLAN?		[B]		
a) Wide Local Area Network	b) Wireless Local Area Network	[2]		
c) Wireless Land Access Network	d) Wireless Local Area Node			
e) whereas Land Recess Recording				
7. What is the name of 300 MHz of unlicensed spec	ctrum allocated by FCC in ISM band	[A]		
a) UNII	b) Unlicensed PCS			
c) Millimetre wave	d) Bluetooth			
8. Which of the following specifies a set of media access control (MAC) and physical layer				
specifications for implementing WLANs?		[C]		
a) IEEE 802.16	b) IEEE 802.3			
c) IEEE 802.11	d) IEEE 802.15			
9. Which of the following is not a standard of WLA	N?	[D]		
a) HIPER-LAN	b) HIPERLAN/2			
c) IEEE 802.11b	d) AMPS			
10. Which of the following is the 802.11 High Rate Standard? [B]				
a) IEEE 802.15	b) IEEE 802.15.4			
c) IEEE 802.11g	d) IEEE 802.11b			

11. Which of the following spread spectrum techniques were used in the original IEEE 802.11 standard?			
a) FHSS and DSSSc) THSS and DSSS	b) THSS and FHSSd) Hybrid technique		
12. Which of the following WLAN standard has la) IEEE 802.6c) DSSS IEEE 802.11b	been named Wi-Fi? b) IEEE 802.15.4 d) IEEE 802.11g	[C]	
13. Which of the following is developing CCK-OFa) IEEE 802.11ac) IEEE 802.15.4	FDM? b) IEEE 802.11b d) IEEE 802.11g	[D]	
 14. HIPER-LAN stands for a) High Precision Radio Local Area Network Network c) High Precision Radio Land Area Network d) Hugh 	b) High Performance Radio Local A uge Performance Radio Link Access N		
15.What is the range of asynchronous user data raa) 1-100 Mbpsc) 1-20 Mbps	tes provided by HIPER-LAN? b) 50-100 Mbps d) 500 Mbps to 1 Gbps c	[C]	
16.What is the name of the European WLAN star Mbps?a) UNIIc) MMAC	ndard that provides user data rate upto b) WISP d) HIPERLAN/2	54 [D]	
17. What is WISP?a) Wideband Internet Service Protocolc) Wireless Instantaneous Source Provider	b) Wireless Internet Service Provide d) Wideband Internet Source Protoc		
18. Which of the following standard committee sp Networks (PAN)?a) IEEE 802.11bc) IEEE 802.11g	b) IEEE 802.15 d) IEEE 802.16 b	Area [B]	

